
Implications of Peer-to-Peer Networks on
Worm Attacks and Defenses

Jayanthkumar Kannan Karthik Lakshminarayanan
�kjk,karthik�@cs.berkeley.edu

CS294-4 Project, Fall 2003

Abstract

Recently, two trends have emerged in the field of
peer-to-peer networks: widespread deployment of
peer-to-peer systems for file sharing and develop-
ment of distributed hash tables that provide efficient
lookups. In this paper, we study how to harness the
power of these technologies to further the state-of-
the-art in both designing and defending against Inter-
net worms. We quantify this advance from three dif-
ferent viewpoints. Firstly, peer-to-peer traffic char-
acteristics differs from traditional Internet traffic in
several aspects, and we quantitatively analyze the ef-
fect of these differences on worm propagation and
control. Secondly, we show that a DHT is an ideal
model for coordination among worms, and design a
DHT-enabled worm that is an improvement over ex-
isting worm designs in a number of aspects, mainly
stealth in propagation and speed of propagation. Our
DHT-based worm designs can be used to implement
a variety of policies aimed at circumventing existing
schemes for worm propagation control. Our results
also show that a coordinated worm can spread more
than twice as fast as worms such as Slammer, while
halving the number of unsuccessful probes. In this
way, this paper attempts to “raise the bar” in worm
design, and this is essential to the development of
suitable defenses. Finally, we offer some prelimi-
nary insights on how a DHT can be used to be defend
against worms.

1 Introduction and Motivation

A paper on worm design and defense requires no mo-
tivation thanks to several well-publicized attacks and
their global impact. The current state of the art in

worm design is captured in [1] which provides the
blueprint for a worm that can infect the entire vulner-
able population in “under 1 hour, in possibly about
�� minutes”. This worm uses a combination of a pre-
collected hit list of vulnerable machines and a tech-
nique to divide the probing load among the infected
machines. Concurrently, there have been several pro-
posals for worm defense. Two mechanisms that have
been suggested include content filtering and address
filtering. However, [2] is a negative result that shows
that neither of these is likely to work at the time scales
of the worm propagation. Another mechanism that
uses a identifying characteristic of worm traffic is
Virus Throttling [3]. However, this requires deploy-
ment at all end-hosts in order to be effective, and does
not prevent the end-host itself from getting infected.
Methods that are being explored recently mainly rely
on unusual traffic patterns during a worm attack. For
example, Cossack [11] aims for cooperative detec-
tion, while Netbait [7] provides mechanisms for shar-
ing information. It is currently unclear whether such
schemes can control worm propagation. To summa-
rize then, the fastest known worms can spread much
faster that our best known defenses can counter them.

In this work, we attempt to show the influence of
a new Internet technology, peer-to-peer networks, on
this state of affairs. This technology has two aspects
pertinent to this problem:

� Widespread deployment of P2P networks:

File sharing networks like Kazaa have gained
popularity, and have substantial user popula-
tions [5]. Traffic patterns in such networks dif-
fer substantially from those in traditional Inter-
net applications in that a participating end-host
is a client as well as a server. In acting as a

1

server, it is typically contacted by several ma-
chines over the Internet without any solicitation.
Thus, a participant end-host has a far richer and
diverse incoming traffic. This has an impact on
worm propagation because passive generation
of hitlists and passive propagation (infected ma-
chine attempts to infected only hosts that contact
it) can be potentially much faster. This effect is
well-noted in literature, in particular in [1], and
we will attempt to quantify this effect. Further-
more, we also quantify how active hitlist gener-
ation can be done by crawling a deployed P2P
network such as Gnutella.

� DHT design:

Peer-to-peer networks can also provide an ef-
ficient implementation of the DHT abstraction,
and this allows for efficient distributed coordi-
nation. We will show that worms that use DHTs
for coordination during propagation can poten-
tially be much faster and be harder to detect (this
possibility was first suggested, though not ex-
plored, in [6]). The other side of the equation,
worm defense, has not been well explored as
well (preliminary approaches has been proposed
in [7], [11], [12]). We will also offer some in-
sights in this direction.

At this point, we also address the following ques-
tion: given that known worm designs can spread very
fast and no good defenses are known against worm
designs, is it necessary to design better worms? For
example, it has been stated in [4] that coordinated
worms are not a prerequisite for fast propagation. We
believe that the answer is yes, because of the follow-
ing reasons. Firstly, propagation time has been the
only metric that has been used so far. A coordinated
worm would improve over existing designs in reduc-
ing the susceptibility to intrusion detection systems,
thus possibly evading detection techniques that may
be devised for uncoordinated worms. Secondly, the
propagation period calculated in [1] makes several
assumptions that are not true in practice, that our de-
signs attempt to accommodate for. Finally, it is nec-
essary to understand attacks in order to build designs
that work against them.

The rest of the report is organized as follows. In
Section 2, we discuss our assumptions of the way the

worm operates. Section 3 enumerates techniques of
harnessing the host population and the traffic patterns
of deployed P2P networks and evaluates them. In
Section 4, we discuss possible ways in which worms
would desire coordination. We also outline how Ke-
lips, an existing DHT can be modified to achieve this.
In Section 5, we outline specific schemes that make
use of the ability to coordinate, and evaluate these
schemes. In Section 6, we briefly discuss how DHTs
can be used for worm defenses. We discuss related
work in Section 7, possible future work in Section 8,
and conclude in Section 9.

2 Worm Model

We will first discuss the simple model of a worm
that we will assume henceforth. In this model, the
worm exploits a bug in some service running at end-
hosts, then proceeds to probe the address space in
some fashion in order to discover other vulnerable
hosts. In the most naive form of probing, the infected
host probes addresses randomly. Smarter worms [1]
might choose to attempt localized infection (infect
other hosts in its network) or work off hitlists em-
bedded in the code or use sequence generators. The
random probing worm is known to have a sigmoid
growth curve, exponential in the beginning and then
beginning to slow down, when the remaining vulner-
able hosts are hard to discover.

We also assume that the probes that the worm per-
forms at the infected host is only limited by the outgo-
ing bandwidth at the host. UDP worms such as Slam-
mer are limited by the outgoing bandwidth alone.
Traditionally, TCP based worms use the kernel TCP
implementations which places a limit on the number
of connections that a host can open. Since this is not
a fundamental limitation, our assumption would hold
for a worm in the context of TCP-based worms too.

3 Discovering Vulnerable Hosts

We discuss and quantify in this section how the di-
verse traffic in P2P networks allow for faster worm
propagation.

2

3.1 Hitlist Generation

Passive hitlist generation before the attack can con-
siderably speed up worm propagation time because
the worm attack takes time to get up to speed. If the
worm exploits a bug in the peer to peer application
itself, then a hitlist can be obtained by deploying a
number of clients that log the IP address of every ma-
chine that contacts them. These clients can also crawl
the network actively to discover as many hosts as pos-
sible in the network. Active probing has the advan-
tage of being faster and of yielding a more complete
topology information, as compared to passive prob-
ing. On the other hand, if the worm exploits a bug
in some other application, the above hitlist still offers
a useful starting point: tools like NMap [8] can be
used to probe the hosts to discover whether they are
susceptible to the worm.

3.2 Worm Propagation

Assuming no hitlist is generated beforehand, and the
bug is in the P2P application itself, worm propagation
in a P2P network can potentially be very rapid, due to
the frequent communication among peers. Moreover,
such networks are known to follow the power-law
model [9], and such graph are known to have a tightly
knit core that connects the other nodes. Techniques
used to optimize lookup distances, such as a biased
random walk [9], can also be used by the worm to
optimize its infection strategy. Such a walk biases it-
self towards this richly connected core, ensuring that
a large part of the network is discovered quickly.

3.3 Evaluation

We deployed Gnutella clients on 25 Planetlab nodes
that performed active crawling of IP addresses, in
order to assess the effectiveness of this scheme.
The implementation was a modification performed to
the Limewire implementation to perform appropriate
packet logging. The crawlers were run for about �
hours and the crawl logs were post-processed.

3.3.1 Hitlist Generation

Figure 1 shows the number of IP addresses crawled
as a function of time. The different lines on the graph
correspond to varying the number of crawlers used to
generate the IP addresses. As time increases, the rate

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 1000 2000 3000 4000 5000 6000 7000 8000

N
um

be
r

of
 u

ni
qu

e
IP

 a
dd

re
ss

es

Time (seconds)

1 crawler
5 crawlers

15 crawlers
25 crawlers

Figure 1: Number of IP addresses crawled as a func-
tion of time. Different lines correspond to different
total number of crawlers.

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 0 5 10 15 20 25

N
um

be
r

of
 u

ni
qu

e
IP

 a
dd

re
ss

es

Number of crawlers

Figure 2: Number of IP addresses crawled as a func-
tion of total number of crawlers used.

at which new IP addresses are seen decreases rapidly.
After a certain point, the number of new IP addresses
seen increases only linearly at a small rate. This can
be attributed to the churn that the Gnutella system
typically sees combined with the aggressive crawling
technique. The other phenomenon evident from the
graph is the diminishing returns in using additional
nodes for crawling. In particular, with 15 crawlers,
we are able to gather ��� ��� IP addresses, and with
10 more crawlers, we add only ��� ��� more new IP
addresses. This effect of diminishing returns is fur-
ther demonstrated in Figure 2 which plots the num-
ber of IP addresses seen as a function of number of
crawlers. In the plots, a random subset of crawlers
is chosen for each point corresponding to a certain
number of crawlers. We note that changing the set of
crawlers, in spite of affecting the actual numbers, had

3

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14

N
um

be
r

of
 u

ni
qu

e
IP

 a
dd

re
ss

es

Number of hops

Crawler #1
Crawler #2
Crawler #3
Crawler #4

Figure 3: Cumulative number of nodes as a function
of depth from a super-peer in Gnutella.

little effect on the overall trends.

We also study the limitations of hitlist generation
in a peer-to-network by studying how fast such a list
goes stale given the typical host availabilities. On
some initial studies, we found that about ��� of the
list is stale after a period of about � week.

3.3.2 Worm Propagation

Using the edges that were seen during the crawl of the
Gnutella network, we regenerated the Gnutella graph
structure. Since many edges were not reported be-
cause the clients did not send responses, the graph we
obtained is a proper subgraph of the actual Gnutella
network. In fact, in some cases, we could success-
fully construct the edges for only about half the nodes
that the Gnutella crawler encountered.

Using this graph structures generated, we stud-
ied how an infection would spread along a Gnutella
graph. Figure 3 plots the cumulative number of nodes
at a particular depth starting from the root node.
Here, the root node is the first node that is infected
by the worm. The different lines in the graph corre-
spond to multiple starting points for the worm, ie. a
set of machines are infected and then start propagat-
ing it in the Gnutella network.

As Figure 3 indicates, most of the nodes that are
visible from any vantage point are only a few hops
away. In fact, for crawler 1 (in figure), about ���
of the ��� ��� hosts whose edges we were able to re-
construct were found within 	 hops away. In fact, by
having multiple infected hosts, similar phenomenon
persists indicating benefit in such a technique.

4 Coordinated Worm Attacks

In this section, we outline several ways in which a
worm might wish to coordinate during its propaga-
tion, and then discuss why a DHT is the ideal solution
to provide that coordination.

4.1 Desirable Coordination

In the traditional worm design, an infected machine
begins to probe independently of other infected ma-
chines. Schemes in [1] attempt to provide some coor-
dination by sharing information when a new machine
is infected. However, coordination during propaga-
tion allows for more powerful designs. The following
factors which deter a traditional worm can be solved
using coordination:

� Avoiding detection: As worm defense technol-
ogy improves, it might become necessary for
worms to follow certain policies during propa-
gation to avoid detection. Following is an sim-
ple example of such a policy: if a machine inside
an access network is infected, then no other ma-
chines should probe the network so as to mini-
mize worm traffic seen by vigilant firewalls that
interpose themselves in the path from external
hosts. Another example of such a policy could
be that a infected machine avoids probing the
same access network more than � times in order
to counter a firewall that uses a threshold of � at-
tempts from the same source to detect an attack.

� Uneven IP address space allocation: The occu-
pation of the 32-bit IP address space is far from
even as has been pointed out in [13]. This im-
plies that random probing is not the ideal infec-
tion strategy. One would like to direct probes to-
wards likely targets, by allowing nodes to share
information about heavily occupied IP prefixes
etc.

� Locality-based infection: It is clearly desirable
for machines to attempt to infect a close-by host
rather than a distant host. Given that round
trip times can vary widely in the Internet (for
one such study, see [14]), it is conceivable that
choosing close-by targets for infection can speed
up infection for TCP-based worms. Also, since
delay is correlated to number of ASes in the

4

path, this ensures the probes cross lesser num-
ber of ASes.

� Probing rate control: It has been pointed out in
[15] that the CodeRed worm could have spread
faster if it had avoided congesting links due to
its own probe traffic. Coordination can be used
to achieve such rate control.

� Avoid needless probing: Infected hosts can share
information in order to avoid attempt to re-infect
the same end-host.

At a high-level, coordination can achieve two
goals. The obvious one is that worm propagation
can be speeded up. A more subtle and important
point is that all of these factors aid evasion of de-
tection mechanisms. For example, if a worm avoids
probing an unoccupied IP prefix, it can avoid detec-
tion by schemes such as backscatter analysis [16]. A
worm that chooses close-by targets is likely to en-
counter fewer core routers in its path to the target,
thus improving evasion against defense mechanisms
deployed by ISPs (say, content filtering). There are
other situations where such coordination is useful.
It is especially useful in getting the worm off the
ground, i.e. if the initial startup phase has been iden-
tified as the slow phase, we can speed it up using
coordination. It is also useful for worms targeting a
small population of machines running a rare instal-
lation (which for some reason is interesting to the
attacker). In such a case, the start-up phase will be
more of a limiting factor, and our schemes will con-
siderably speed it up.

4.2 Coordination Using a DHT

The coordination of infected machines is a challeng-
ing problem because the set of infected machines in-
creases rapidly during the initial stages of the propa-
gation. Based on the desirable goals of the previous
section, the scheme we use for coordination should
provide the following services:

� Fast routing table maintenance to deal with the
rapid joining of new nodes. Information should
not be lost pathologically in the face of nodes
leaving.

� Load balancing properties to help divide probing
load equally across all infected machines.

� Ability to answer such questions such as “Is
any node from IP address prefix x.y.w.z/16 in-
fected?” efficiently.

� Ability to answer nearest neighbor nearest
queries. Accuracy is a secondary requirement.

It is clear that DHTs can provide the above ser-
vices a worm would require to coordinate, though it
is questionable whether DHTs can handle the high
churn rates of such an environment. We chose a
churn-resistant DHT, Kelips [17] to explore this ques-
tion. Also, note that accuracy of lookups is not of
paramount importance – if consistency is delayed by
a few seconds, it would not affect the coordination
phase.

Before delving into using Kelips to achieve coor-
dination, we first discuss how a DHT can be made
to work in our environment with rapid joins. Firstly,
our overlay mechanism is organized as a two-level
hierarchy, utilizing the well-known heterogeneity of
peer-to-peer hosts ([18]). Each worm joins the super-
peer level only if it has sufficient bandwidth to do.
Otherwise, it joins a super-peer which shields it from
DHT control traffic. We expect that each worm will
find a super-peer nearby which maintains worm state
on its behalf.

4.3 Kelips-Based Coordination

In this work, we use Kelips, a hybrid DHT for main-
taining information across all infected hosts.

4.3.1 Introduction

We first give a brief introduction to Kelips. Kelips is
a hybrid of an unstructured network and an DHT de-
signed to handle high churn. Kelips nodes are orga-
nized into a set of � affinity groups (based on a hash
function). Keys are hashed using the same hash func-
tion to determine which affinity group they should be
stored in. Note however that a key can be stored at
any node in its affinity group. Each node maintains
the following state:

� Affinity Group Pointers: Pointers to every node
in its group.

� Foreign Contacts: A set of � pointers to nodes in
every other group.

5

� Home Pointers: For all keys that map into its
group, a pointer to the node in its group that is
responsible for maintaining the value.

� Data: (Key,Value) pairs for data stored on itself.

This state is synchronized using periodic gossip
with nodes in its group and other groups. During
each gossip round, only a constant amount of data is
exchanged, which means that complete consistency
within a group is achieved in �
��
 �� rounds. The
insertion of a (key,value) pair is accomplished by first
routing to the group, then choosing a random node
within the group as the home for that item. Lookups
are done in a similar fashion. In our application, data
for a particular prefix is inserted using the prefix as
the key.

4.3.2 Modifications to Kelips

We modified Kelips in a few respects in order to
adapt it for our purpose, which we outline in this sec-
tion. Firstly, the parameter � in Kelips is chosen to
be �

�
��, so as to optimize state maintenance. In

our case however, because of our admission control
procedure, the Kelips node are well-provisioned, thus
we chose � to improve consistency at high churn. A
high value of � means there are lesser nodes in each
affinity group, which implies that data consistency is
reached sooner. However, this also means that the
fault-tolerance within a group is poorer. In our case,
the population of Kelips nodes is around a few thou-
sand (in Peer-to-peer networks like Gnutella, about
���� super-nodes handle the queries of a hundred
thousand nodes, thus this value is in the right ball-
park). We chose � � 	� to ensure quick consistency
(we found in our simulations that with these parame-
ters, consistency was reached in less than a minute).
Also, we chose to exchange all inconsistent state dur-
ing gossip, which is reasonable given the small group
size.

Secondly, during high churn, it is possible that two
simultaneous inserts can lead to more than one node
being appointed as the homenode for the same key.
This could happen, for example, when these lookups
arrive at two different nodes in the same group, which
chose different homenodes and start propagating in-
consistent homepointers. This inconsistency is dis-
covered when two nodes in the same group attempt to

synchronize. We chose an application-specific form
of conflict resolution: the data stored in the two home
nodes is combined, and one of them (the one with
the higher address) is chosen as the homenode. The
important point here is that the data inserted during
every put operation is incorporated into the eventual
homenode, even during churn. This is possible since
the information that we store in Kelips is an aggregate
of all updates.

Thirdly, we modified the matching algorithm for
key matching to be a longest-prefix match. This
means that given a lookup or a insert for a IP ad-
dress prefix, a Kelips node performs a longest prefix
match in its homepointers table to find the homen-
ode. This allows some flexibility in relocating certain
keys, which we will use in our locality-aware infec-
tion schemes.

4.3.3 Introduction Service

We assume that the attacker acquires control over
a small number of well-connected zombies. These
zombies provide the introduction service into the net-
work. An infected machine first contacts these zom-
bies in order to obtain a list of other infected ma-
chines that it can add as neighbors.

5 Schemes

In this section, we discuss how each of the goals we
outline in the previous section can be attained using a
DHT.

5.1 Policies to Evade Detection

In this section, we discuss how DHTs can be used
to implement specific policies that can help worms
evade existing schemes. Note that we do not attempt
to hide the worm propagation itself, we only seek it
to make it more difficult for existing schemes to stop
worm propagation.

Honeypots ([10]) are monitored machines that are
deliberately exposed to external attack. As has been
pointed out in [2], address filtering can be used to
throttle worm propagation. Honeypots provide a way
of harvesting IP addresses of infected machines, so
that any probes from those addresses are dropped.
This can be solved by using address spoofing, which

6

however does not work for worms that propagate us-
ing TCP. One policy that worms might use to circum-
vent such schemes is to not let more than � machines
probe a given prefix. This ensures that the honey-
pot sees only a small subset of the infected machines.
Such a scheme can be implemented as follows: the
value stored for each prefix is the number of currently
infected hosts probing that prefix. Before probing an
IP prefix, each host issues a lookup into the DHT for
that prefix. The homenode for that prefix grants ac-
cess until the number of probers exceeds a threshold
value. This scheme can be made resilient to failure
by setting conservative thresholds. This method can
also be used to circumvent Cossack, FloodWatch, and
other propagation control schemes outlined in [12].

5.2 Uneven IP Address Space Allocation

Broadly, the scheme attempts to maintain a proba-
bility distribution over IP address prefixes to reflect
the fraction of the vulnerable hosts that are present in
each prefix. Let an infected host scan a set of �� IP
addresses in a prefix, of which ��

�
are vulnerable and

���

�
are then newly infected (���

�
� ��

�
� were already

infected). It sends back
��� �
�

�
� ���

�
� back to the home

node of the prefix which aggregates the information.
For each prefix, the home node maintains the fraction
of vulnerable hosts and the extent of the prefix that is
scanned.

Thus, the home node for a prefix has knowledge
of total probes made to a prefix (� � ���), total
number of vulnerable hosts that were probed includ-
ing multiple probes (� � ���

�
), and the total number

of unique infected hosts (� � ����

�
). The expected

number of vulnerable hosts is then 	 � �
� , and the
expected probability that a new probe will hit a vul-
nerable host, � �
	�
 � ��

 , where
 is the size
of the prefix.

When a host is infected, it chooses a new prefix
to probe based on the following algorithm. It gen-
erates � IP addresses randomly (� is a simulation
parameter, set to �� in our simulations) and probes
the DHT about the occupancy information of the pre-
fixes. In return, it receives the ”�” value for each of
the prefixes. If the prefix is probed for the first time
(i.e., the Kelips home node does not have any infor-
mation about the prefix), � for that prefix is initial-
ized to the global average value of � over all prefixes

probed thus far. The global average is performed by
simply piggybacking average occupancy information
along with Kelips’ gossip protocol. Upon receiving,
� for all the � prefixes, the infected host generates
random IP addresses chosen from the � prefixes in
proportion to the � values. Thus, a prefix that is esti-
mated to have more vulnerable hosts is probed more.
The host probes the set of � prefixes for a small pe-
riod � . After this phase, it updates the information
back into the DHT, and then chooses a new set of �
prefixes and continues the same operation.

We made this basic technique robust to statistical
variations during the probing process. During the ini-
tial phase of the worm propagation, few vulnerable
hosts will be discovered in sparsely populated pre-
fixes, and such prefixes will have a lower chance of
being probed further. Also, the estimate of the frac-
tion of vulnerable hosts using the formula 	 � �
�

can be very inaccurate, especially for sparse prefixes.
To avoid this problem, we added confidence esti-
mates for the vulnerability fraction, and used the high
end estimate as the metric. This high end estimate is
biased towards the sparsely populated prefixes. The
estimate is calculated using a ��� confidence esti-
mate interval.

5.2.1 Extensions

This scheme can also be extended to a multi-vector
worm that can maintain different address spaces for
its different payloads, since each prefix has a different
vulnerability index for its payloads.

As such, this scheme serves another purpose as
well: it directs the search to vulnerable networks, not
simply dense networks. In most cases, the worm tar-
gets a bug in a set of specific versions of an applica-
tion. In practice, if a host is running a specific ver-
sion, it is not unlikely that other hosts within its net-
work (and hence with the same prefix) are running the
same version. Thus, this scheme exploits the locality
factor as well.

5.3 Locality-Aware Infection

The goal in this scheme is to ensure that each infected
host probes nearby prefixes. This is advantageous
because this ensures that each probe traverses fewer
ASes (in general, delay is correlated to the number

7

of ASes traversed). This in turn, decreases the prob-
ability of detection or dropping, when ASes deploy
defenses within their network.

To implement such a scheme, we modified Kelips
to make it locality-aware for our purposes. When
choosing a home pointer for a particular prefix, the
Kelips node chooses� random nodes within its affin-
ity group, and chooses the node closest to the prefix
as the homenode for that prefix. Each infected host,
that is not in the Kelips DHT (due to admission con-
trol), also tries to adaptively find a closer parent. This
is accomplished by having each host query its parent
periodically for a better parent within the same group.
The reason we restrict this search to nodes within the
same group is that the foreign contacts of a node are
chosen so as to minimize latency. This means that
using the foreign contacts leads to a biased choice.

Under these above modifications, we have the fol-
lowing properties: the homenode for a prefix is close
to that prefix and each infected host is close to its par-
ent. Now, we make the following assumption: if node
A is close to node B, and node B to C, we assume A
is also close to C. This is not universally true in the
Internet, but is a reasonable approximation. Along
with this assumption, it is easy to see how an in-
fected host can choose a prefix close to it. It uses the
prefixes stored at its parent and those at the foreign
contacts of its parent (which are close to its parents).
The host now samples from these prefixes and begins
probing that prefix. This scheme can also be com-
bined with the uneven IP address scheme, by letting
the host sample from these prefixes according to the
metric for each of those prefixes.

5.3.1 Extensions

In our simulations, we have assumed that all prefixes
have the same length. This assumption is not true in
practice, since the Internet has a wide range of ad-
dress prefixes. Thus, all IP addresses belonging to
the same prefix need not have similar latencies with
respect to a given host. This issue can be addressed
by incorporating longest prefix matching.

If a homenode for a given prefix finds that there
are distinct clusters within that prefix of widely dif-
ferent latencies (for example, using the GeoCluster
technique in [19]), then it can choose to split that pre-
fix into sub-prefixes. Each sub-prefix can then be mi-

grated to other suitable home nodes using the earlier
probing technique. Other nodes in the group will now
use longest prefix matching on their homepointer ta-
bles in order to find the homenode for a given prefix.

5.4 Simulations

We used a discrete-event simulator to simulate the
above schemes and evaluate their effectiveness. Sim-
ulating the wide-area Internet is a hard problem due
to insufficient data about delay, bandwidth etc, and
to do so while also simulating thousands of end-hosts
is computationally expensive (for example, see [20]
for a discussion of these issues). We did not simulate
any background traffic for scalability; we only sim-
ulated vulnerable hosts. We also assume that route
changes do not occur during worm propagation since
modeling such changes is a hard problem in its own
right. We chose a worm payload size of ��� bytes
in our simulations. We simulated ��� ��� vulnerable
hosts living in �� ���
�� prefixes (non-vulnerable or
non-existent hosts are indistinguishable for us). This
prefix length was chosen so that the size of the pre-
fix was large enough to allow information sharing
among multiple users. Hosts in a given prefix are
assumed to be connected to the the AS-level graph
through an access router with an access link band-
width of �� Mbps. The access bandwidth of the hosts
were set as follows: ��� of the hosts had bandwidth
assigned uniformly from the range �� � ��� Kbps,
	�� from �� ��� � 	� ��� Kbps, and the rest from
	� ��� � ���� ��� Kbps. Last-hop delays were ig-
nored. The admission control bandwidth for Kelips
was set at � Mbps. Each node gossiped every � sec-
ond with a randomly chosen node from its group and
with a randomly chosen node from � other groups.
Each node chooses an IP prefix every � seconds us-
ing lookups into the DHT, and then reports statis-
tics for that prefix at the end of that time period.
Also note that since our simulated system is an or-
der of magnitude smaller than the Internet, our results
should only be interpreted as comparisons between
our schemes and a strawman scheme (random prob-
ing) in an Internet-like distribution, and not as any
indication towards actual performance in the Internet.

In our discrete simulator, at the start of each time
slot, each infected host is allocated a fixed number of
probes, that is calculated based on its access band-

8

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

Time (in secs)

Coordinated
Coordinated-Centralized

Random

(a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0 200 400 600 800 1000 1200 1400 1600

F
ra

ct
io

n
of

 S
uc

ce
ss

fu
l P

ro
be

s

Time (in secs)

Random
Coordinated

Coordinated-Centralized

(b)

Figure 4: Impact of uneven IP address space allocation: (a) Rate of infection, (b) Fraction of probes that failed

width and the current number of infected hosts in its
network (we model congestion due to worm probing
only in the access link). The host now proceeds to
send these probes to chosen IP address (either ran-
dom or based on our schemes). Since we only simu-
late bandwidth-limited worms, TCP timeouts etc are
not an issue.

5.4.1 Kelips Consistency and Overhead

In this section, we attempt to evaluate how well our
Kelips-based scheme scales to the Internet. In our
simulations, we used 	� Kelips groups (� � 	�) and
found that Kelips reached consistency in the order
of seconds, for 	��� nodes in the DHT. This is rea-
sonable because the number of nodes in an affinity
group is on the average ���. With a gossip period
of � sec, consistency is reached in �
��

��� time.
The overhead for gossiping is also manageable for the
high bandwidth nodes. This overhead consists of two
main parts: synchronization with nodes in the same
group and with nodes in � other groups. The first
term counts the overhead of exchanging lists of nodes
in the same group (for ��� nodes, this is about ���
bytes) and homepointer information (about ���� ���
thousand prefixes corresponds to about ��� ��� pre-
fixes per group, which is about ���� bytes of data).
Thus, since gossip occurs once per sec, this requires
a bandwidth of ��� Mbps. The second term is min-
imal overhead since it involves contacting � foreign
contacts and sampling from their groups. Thus, the
maintenance overhead is about ��� Mbps.

The lookup and insert overhead is also simple
to calculate. Assuming an infected population of

���� ��� nodes which perform a lookup or insert ev-
ery � seconds, and observing that each lookup in-
volves contacting a maximum of � nodes (the parent,
his foreign contact, the homenode), this overhead is
about �� operations per second per node, which is
quite reasonable.

5.4.2 Evaluating Coordinated Worms

In these simulations, each node looked up �� pre-
fixes in the DHT before choosing one to infect. The
�� ��� prefixes were populated in a exponential fash-
ion (with the highest one being populated by ���

vulnerable hosts). We compare the DHT-based co-
ordinated worm with two baseline cases – (a) random
worm (b) coordinated centralized worm, which repre-
sents the case where coordination is achieved through
a central entity. The first baseline (random) provides
insight into how much better our design performs,
and the second (centralized coordinated) tells us how
much worse we perform by using a DHT for sharing
information. For locality-based simulations, it was
necessary to simulate a Internet-like delay distribu-
tion between ASes. For this purpose, we obtained
the AS-level graph was obtained from [21] and short-
est paths and distances were computed in compliance
with the inferred policies. Then, the distance ma-
trix was sampled to obtain the required distribution.
All prefixes were equally populated in this simula-
tion. When choosing a prefix for infection, each node
picks up �� prefixes from its parents and its parent’s
foreign contacts. When choosing the homenode for a
prefix, the best of �� random choices is chosen as the
home.

9

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 0 200 400 600 800 1000 1200 1400 1600

A
ve

ra
ge

 N
um

be
r

of
 A

S
-le

ve
l h

op
s

Time (in secs)

Random
Coordinated

Coordinated-Centralized

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000 1200 1400 1600

F
ra

ct
io

n
of

 D
up

lic
at

e
P

ro
be

s

Time (in secs)

Coordinated
Coordinated-Centralized

Random

(b)

Figure 5: Impact of uneven IP address space allocation: (a) Number of AS hops traversed on an average (extent of
network utilization), (b) Fraction of addresses probed that were already infected

Figure 4(a) plots the rate of infection of the worm
in terms of the number of infected hosts as a function
of time. The graph clearly shows that the coordinated
worm is able to infect the entire population in about
half the time as the random worm. What is more in-
teresting is the fact that the coordinated worm per-
forms much better in the initial startup phase where
it performs more than thrice as well as the random
worm. Furthermore, using a DHT to coordinate in-
formation performs only marginally worse than the
case in which coordination information is maintained
at a central point. This is because, as discussed in
Section 5.4.1, Kelips achieves consistency in order of
seconds and the staleness of the information used for
sampling is not very high.

Figure 4(b) shows the fraction of probes that suc-
ceeded in hitting a vulnerable host. Due to the very
low fraction of vulnerable hosts that we used in our
simulations (� �����
�����), the number of suc-
cessful probes is very small. We improve the fraction
of successful probes by a factor of upto �. Note that
the fluctuations during the initial phase of worm prop-
agation are due to inaccuracy of estimates caused by
the small number of samples obtained.

Figure 5(a) suggests that the number of AS hops
traversed by the coordinated worm is about ���

lower than the random worm. This represents a
marginal improvement in the utilization of network
resources. We believe that incorporating locality
aware probing mechanisms would improve this sig-
nificantly.

Figure 5(b) plots the fraction of probes that hit
hosts that are already infected. Here, the coordinated

worm hits an already infected hosts far more than the
random worm. There are two reasons for the trends
seen: (i) random worm infects far fewer hosts in the
same time, and hence has lot more hosts left to in-
fect, (ii) coordinated worm probes “better” areas and
hits infected hosts rather than non-existent addresses.
In the future, we plan to explore how to share infor-
mation about what hosts are probed using techniques
such as Bloom filters.

6 Using DHTs for Worm Defense

We now discuss some preliminary ideas for using
DHTs for worm defense. We believe that the ideal
point in the network to fortify against worm attacks
are firewalls, the traditional point where most net-
work intrusion detection systems are placed. Deploy-
ment at firewalls is easier to achieve than deployment
at millions of end-hosts, and also provide a way to
implement organization-wide policies. In our model,
there are a number of cooperating firewalls that ex-
change information in order to detect ongoing worm
attacks and alert one another other about such attacks.
We believe DHTs can aid in worm defense in at least
the three following ways.

Two recently proposed schemes for DDoS attack
detection, Cossack and [12], rely on each participat-
ing firewall to inform all other firewalls of any events
by multicast etc. Such state maintenance might be too
expensive for every router to maintain. DHTs offer an
efficient way to maintain such state in a balanced and
robust fashion. Robustness is easily provided on top

10

of the DHT abstraction using replication. There are
some additional security advantages as well: because
structured DHTs impose constraints on the keyspace
that a node is responsible for, it is not easy for a node
to corrupt selective data.

Secondly, a more subtle point worth noting is that,
in the likely case of partial deployment, DHTs of-
fer an additional advantage. The state maintained by
firewalls typically includes models of outgoing or in-
coming traffic at itself. In the partial deployment sce-
nario, each firewall has to maintain state on behalf
of non-participating firewalls in some indirect fash-
ion. This state could be a model of outgoing traffic
from that firewall for example. As another exam-
ple, the state could be a model of incoming traffic,
though maintaining such state would require some
form of feedback by the core as well. Multiple van-
tage points offer more information and exchange of
observed information will improve observation ac-
curacy. DHTs provide a way of aggregating infor-
mation about non-participating firewalls in a simple
fashion: information about each non-participant fire-
walls is maintained by one of the participants. Infor-
mation about such firewalls can be observed at any
vantage point, and can be made available to others by
maintaining it using a DHT.

The third observation here is that we would like
this exchange of information to proceed during a
worm attack, indeed, it is during the attack that
such exchange of information (such as signatures of
worms etc) might be crucial. During worm attacks,
it has been noted in several studies (for example, see
[22]) that Internet routing can suffer due to link con-
gestion. These firewalls can use a DHT as an efficient
routing mechanism that works in the face of Inter-
net failure. Even if a firewall is unreachable directly,
multi-hop routes by relaying through other firewalls
might be available, and the ability of a DHT to pro-
vide redundant routes has been pointed out in [23].
Thus, DHTs can be used for connectivity when the
Internet routing itself fails.

7 Related Work

In the last few years, there has a rapid rise in the num-
ber of worms in the Internet (such as Nimda, Code
Red, Slammer). Most of these worms are very sim-

ple in their probing mechanism – once a host is in-
fected, it scans random IP addresses for vulnerability
and tries to infect it. Multi-vector worms (such as
Nimda) look for multiple vulnerabilities on an end-
host for break-in. [1] presents many techniques that
can be used in worm design, and shows that it might
be possible to infect the entire vulnerable population
in “under 1 hour, in possibly about �� minutes”. The
techniques suggested include a pre-collected hitlist of
vulnerable machines and a technique to divide the
probing load among the infected machines. How-
ever, none of the techniques suggested in literature
attempt to achieve coordination among worms dur-
ing the propagation phase. They do not explicitly try
to circumvent the policies of intrusion detection sys-
tems. In this paper, the ability to share information
efficiently using DHTs makes it possible to achieve
these goals.

The best defenses that are known today have been
explored in [2], COSSACK [11], Netbait [7], [12].
We have shown that carefully designed worms can
circumvent such detection techniques. Again in de-
signing worm defenses, the idea of sharing informa-
tion efficiently using a DHT has not been explored in
literature.

DHTs have been originally proposed as an alterna-
tive to Gnutella, Napster for efficiently sharing files
across the wide-area. But since then, they have been
used for a variety of purposes 1. The original de-
signs (such as Chord, CAN, Pastry, Tapestry) have
been improved upon to provide better resilience in
the presence of churn (such as Kelips, Bamboo). We
exploit this ability to efficiently share information in
the presence of churn. Such an overlay system not
only allows for efficient data sharing, but also pro-
vides redundant routes (as suggested in [23].

8 Future work

Evaluation of our schemes under a more comprehen-
sive model of the wide-area Internet is necessary in
order to understand how they would work in realis-
tic scenarios. This is a hard problem since several
aspects of the wide-area Internet have not been char-
acterized so far.

1As an aside, it is interesting to note that the original goal still
remains elusive!

11

In our schemes, we have not considered the effect
of patching machines during the infection. Patching
can lead to nodes leaving the DHT and requires repli-
cation for robustness. This can conceivably be added
into our schemes with minor modifications.

We have barely scratched the surface in attempting
to use DHTs for defense against worms. We believe
that it offers a lot of promise in providing a mecha-
nism for defending against worm propagation.

9 Conclusion

The new emerging wave of P2P systems has led to
tremendous amount of research in many areas in the
field of file-sharing, distributed filesystems, network-
ing and so on. But it also carries along with it the
ability to perform malicious activities efficiently. In
this paper, we have shown how P2P systems can be
used to design better coordinated worms. We have
used the power of deployed P2P systems for gath-
ering IP address hit-lists and propagation within the
system, and efficient DHTs for coordinating informa-
tion across infected nodes. The primary challenge in
using DHTs for coordination is achieving consistency
in the face of a large arrival rate of nodes into the sys-
tem. We show that, with minor modifications, Kelips
can achieve consistency in maintaining data within
a few seconds. This DHT abstraction allows for the
design of worms that implement policies to circum-
vent existing schemes for throttling worm propaga-
tion. It also allows for improving other aspects of
worm propagation, by exploiting the distribution of
the IP address space and the delay distribution of the
Internet. Our simulations support our thesis that such
coordination can help design more stealthy worms
that also spread more rapidly than current day Inter-
net worms.

Understanding the potential power of Internet
worms is of paramount importance, especially with
emerging technologies that make sharing information
easy and efficient. We believe that this possibility that
we have explored here would guide the research in
designing better and smarter defenses for protecting
hosts against Internet worms.

10 Acknowledgments

We thank Boon Thau Loo for providing the imple-
mentation of Gnutella crawler, and helping us with
the same. We also thank Lakshminarayanan Sub-
ramanian for discussions regarding using DHTs for
worm defense. We are also grateful to Indranil Gupta
and Linga Prakash for helping with parameter choice
for Kelips.

References

[1] Stuart Staniford, Vern Paxson and Nicholas
Weaver, “How to 0wn the Internet in Your
Spare Time”, Proc. USENIX Security Sympo-
sium 2002.

[2] David Moore, Colleen Shannon, Geoffrey
Voelker and Stefan Savage’, “Internet Quar-
antine: Requirements for Containing Self-
Propagating Code”, Proceedings of the 2003
IEEE Infocom Conference, San Francisco, CA,
April 2003.

[3] Matthew M Williamson, Jamie Twycross,
Jonathan Griffin, Andy Norman, “Virus
Throttling”,HPL-2003-69, Technical Report,
HP Labs.

[4] Nicholas Weaver, “Warhol Worms: The
Potential for Very Fast Internet Plagues”,
http://www.cs.berkeley.edu/ nweaver/warhol.html.

[5] Stefan Saroiu, P. Krishna Gummadi, and Steven
D. Gribble, “A Measurement Study of Peer-
to-Peer File Sharing Systems”, Proceedings of
Multimedia Computing and Networking, Jan-
uary 2002 (MMCN’02), San Jose, CA, USA.

[6] Brandon Wiley, “Curious Yellow: The
First Coordinated Worm Design”,
http://blanu.net/curious yellow.html.

[7] Brent N. Chun, Jason Lee, and Hakim Weath-
erspoon, “Netbait: a Distributed Worm Detec-
tion Service”, Unpublished manuscript, Febru-
ary 2003.

[8] Network Mapper,
http://www.insecure.org/nmap/.

12

[9] Lada A. Adamic, Amit R. Puniyani, Rajan M.
Lukose, and Bernardo A. Huberman, “Search
in Power-Law Network”, Appears in Phys. Rev.
E, 64 46135 (2001).

[10] Christian Kreibich, Jon Crowcroft, “Honey-
comb - Creating Intrusion Detection Signatures
Using Honeypots”, Proc. Hotnets-II , 2003.

[11] Christos Papadopoulos, Robert Lindell, John
Mehringer, Alefiya Hussain, Ramesh Govin-
dan, “COSSACK: Coordinated Suppression of
Simultaneous Attacks”, DARPA Information
Survivability Conference and Exposition - Vol-
ume II, April 2003.

[12] Jiang Wu, Sarma Vangala, Lixin Gao, and
Kevin Kwiat, “An Effective Architecture and
Algorithm for Detecting Worms with Various
Scan Techniques”, Network and Distributed
System Security Symposium 2004.

[13] Eddie Kohler, Jinyang Li, Vern Paxson and
Scott Shenker, “Observed Structure of Ad-
dresses in IP Traffic”, Proc. ACM SIGCOMM
Internet Measurement Workshop, November
2002.

[14] Skitter measurement tool,
http://www.caida.org/tools/measurement/skitter/.

[15] Cliff Changchun Zou, Weibo Gong, Don
Towsley. “Code Red Worm Propagation Mod-
eling and Analysis”, 9th ACM Conference
on Computer and Communication Security
(CCS’02), Nov. 18-22, Washington DC, USA,
2002.

[16] David Moore, Geoffrey M. Voelker, and Stefan
Savage, “Inferring Internet Denial-of-Service
Activity,” Usenix Security Symposium, 2001.

[17] Indranil Gupta, Ken Birman, Prakash Linga,
Al Demers, and Robbert van Renesse. Kelips,
“Building an efficient and stable P2P DHT
through increased memory and background
overhead”, IPTPS, 2003.

[18] Qin Lv, Sylvia Ratnasamy, Scott Shenker,
“Can Heterogeneity Make Gnutella Scalable”,
The 1st International Workshop on Peer-to-Peer
Systems (IPTPS).

[19] Venkata N.Padmanabhan and Lakshmi-
narayanan Subramanian, “Determining the
Geographic Location of Internet Hosts”, Ex-
tended Abstract in ACM SIGMETRICS 2001,
Boston, MA, June 2001.

[20] Michael Liljenstam, Yougu Yuan, BJ Premore,
David Nicol, “A Mixed Abstraction Level Sim-
ulation Model of Large-Scale Internet Worm In-
festations”, in MASCOTS, IEEE Computer So-
ciety Press, Fort Worth, TX, Oct 2002.

[21] Lakshminarayanan Subrmanian, Sharad Agar-
wal, Jennifer Rexford and Randy H.Katz,
“Characterizing the Internet Hierarchy from
Multiple Vantage Points”, IEEE INFOCOM
2002 , New York, June 2002.

[22] James Cowie, Andy Ogielski, BJ Premore,
and Yougu Yuan, “Global routing instabilities
during Code Red II and Nimda worm propaga-
tion”,http://www.renesys.com/projects/bgp instability,
September 2001.

[23] Ben Y. Zhao, Ling Huang, Jeremy Stribling,
Anthony D. Joseph, and John D. Kubiatow-
icz, “Exploiting Routing Redundancy via Struc-
tured Peer-to-Peer Overlays”, The 11th IEEE
International Conference on Network Proto-
cols(ICNP) Atlanta, Georgia, November 2003.

13

